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A Decision Support Model for Cloud Bursting
Cloud bursting combines the advantages of private and public clouds by adding external
resources when internal resources are insufficient. Private clouds are still less expensive and
remain under the control of the owner, but public cloud resources of any size are available
on demand. The article suggests a decision support model to compute the optimal amount
of internal resources and cost reductions.
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1 Introduction

Cloud computing (Weinhardt et al. 2009)
has gained notable popularity in the past
few years. With this paradigm, users may
buy computing resources as a scalable
utility service. Gartner Market Research
estimates that this infrastructure, as a ser-
vice market, will grow from $3.7 billion
in 2011 to $10.5 billion in 2014 (Pettey
2011). Already in 2011, cloud comput-
ing has become a top technology priority
(Luftman and Zadeh 2011; Moore 2011).
Yet many enterprises still have doubts
about public cloud computing (Pettey
and Tudor 2010) and prefer to rely on
private clouds, constrained to one enter-

prise or to a cluster of trustworthy en-
terprises (i.e., community clouds). Cloud
bursting (Kailasam et al. 2010) is some-
times used synonymously with the terms
augmented cloud computing (Assunção
et al. 2009; Reynolds and Bess 2009) or
hybrid clouds (Armbrust et al. 2010; Ma-
teescu et al. 2011). It offers a further,
mixed strategy that can offload some
workload onto public clouds (external
providers) and thus obtain infrastructure
as a service when internal resources are
not sufficient.

Mainstream adoption of cloud burst-
ing is likely five to ten years away (Smith
2011); the adoption of cloud computing
remains a complex decision. This article
focuses on the economic aspect of cloud
computing in order to develop an eco-
nomic decision model that determines
the optimal size of internal resources
and the resulting cost savings achieved
through cloud bursting. Consideration of
workload distributions and especially de-
mand volatility are central to this issue.
The model relies on a modification of
classical lease-or-buy models to address
this requirement. The model recognizes
that public cloud resources usually are
more expensive than internal resources
when fully utilized. Therefore, bursting
is the economically optimal strategy, on
condition that the right size of the private
(internal) cloud resources is chosen.

As a purely economic model, the model
presumes that cloud bursting is manage-
rially feasible (outsourcing decision) and
that there are suitable providers that can
offer required service levels (vendor se-
lection problem). Several studies in infor-
mation systems research already address
these questions as separate decision prob-
lems, also with specific focus on cloud
computing.

As a practical demonstration, the em-
pirical section examines two applica-
tions. The first dataset serves to deter-
mine the optimal size of a datacenter

needed by a large bank if it uses cloud
bursting. The bank’s low current utiliza-
tion rate allows the cloud bursting intro-
duction to generate cost savings of ap-
proximately 70 %. The second dataset
shows the potential created by pooling
three workloads under cloud bursting, in
order to compare the effects of pooling
and bursting. The three unpooled clouds,
when subjected to cloud bursting, would
be approximately 50 % more expensive
than the current pooled datacenter with-
out bursting. But pooled workloads with
cloud bursting are 6% less expensive.

2 Related Literature

2.1 Cloud Computing

The U.S. National Institute of Standards
and Technology (Mell and Grance 2009)
defines cloud computing as a pay-per-
use model that provides available, con-
venient, on-demand network access to
a shared pool of configurable comput-
ing resources (e.g., networks, servers,
storage, applications, services), which
can be rapidly provisioned and released
with minimal management effort or ser-
vice provider interaction. This defini-
tion comprises five key characteristics:
on-demand self-service, ubiquitous net-
work access, location-independent re-
source pooling, rapid elasticity, and pay-
per-use. Vaquero et al. (2009) also cite re-
source virtualization, scalability through
seemingly infinite resources, customized
service level agreements, ease of use, and
commercial pay-per-use models as com-
monly accepted key characteristics. These
characteristics appear as presumptions in
the proposed model. The model how-
ever relaxes the pay-per-use requirement,
which is more a business model than
a technical characteristic. A descriptive
review of cloud computing literature is
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available in Yang and Tate (2009). The fo-
cus of this paper is more an economic
than a technical one. Therefore, the next
sections of related literature concentrate
on papers with this orientation.

2.2 Lease-or-Buy Decisions

From an economic point of view, the
decision to use cloud bursting relates
to a lease-or-buy problem. Lease-or-buy
problems are frequent subjects of inves-
tigation in management and account-
ing research, and operations literature.
Almost everything, from car pools to
copiers, can be either leased or bought.

The key difference between classical
lease-or buy problems and the model de-
scribed in this article is that they typi-
cally do not consider any mixed strate-
gies. Also, the volatile demand as key
driver is not in focus. Early solutions ap-
pear in Weekes et al. (1969), Harwood
and Hermanson (1976), and Anderson
and Martin (1977).

Moving on to contemporary, cloud-
related publications, Walker et al. (2010)
develop a decision model applied to stor-
age cloud applications and based on the
results of Johnson and Lewellen (1972).
Their approach calculates the separate
net present values (NPV) of the leasing
decision and the buying decision. The
NPV sums all current and future costs
or earnings while discounting the fu-
ture cash flows, which results in future
cash flows counting less than present cash
flows. Thus, the NPV models a preference
for regular costs over immediate one-off
costs. The discount is modeled like a neg-
ative interest rate, such that constant reg-
ular cash flows always have a finite NPV.

There are a few other publications that
have analyzed the costs of cloud com-
puting as a classical lease-or-buy prob-
lem: Deelman et al. (2008) analyze a spe-
cific data-intensive application, whereas
Walker (2009) compares the lifetime
costs of leasing cloud resources to the
costs of purchasing resources, expressed
as the cost per CPU hour. Walker con-
cludes that leasing is the less expensive
option if the lifetime of purchased re-
sources is extremely long (10 years or
more) or utilization is low (40 % sce-
nario). Finally, Li et al. (2009) develop a
cost calculation tool to determine the to-
tal cost of cloud ownership which can be
used to determine the input for such a
decision model. However, none of these
authors considers a mixed strategy (cloud
bursting) or stochastic demand.

The classical lease-or-buy decision does
not consider all problem dimensions.
This paper will also not discuss every
problem dimension. For instance, it does
not consider additional managerial ef-
fects of outsourcing. Extensive research
summaries about outsourcing in gen-
eral and its research directions can be
found in Dibbern et al. (2004) or Lac-
ity and Willcocks (2000). More recent re-
search focuses on cloud computing as a
specific case of outsourcing (Blaskovich
and Mintchik 2011; Lacity et al. 2010;
Motahari-Nezhad et al. 2009; Yang 2011).

Also, the classical lease-or-buy typically
does not consider the vendor selection.
Finding an optimal vendor is not triv-
ial and may influence the lease-or-buy
decision itself. Vendor selection is a tra-
ditional research area in operations re-
search, decision science, marketing, and
management, which generally consider
manufactured goods. In an often-cited
milestone, Dickson (1966) identifies cri-
teria used by purchasing managers. Sev-
eral recent contributions apply and con-
cretize results from classical vendor se-
lection literature in the context of cloud
computing (Garg et al. 2011; Godse and
Mulik 2009; Kang and Sim 2010; Li et al.
2011; Rehman et al. 2011).

2.3 Cloud Bursting

Cloud bursting as a special form of cloud
computing is a central concept in this pa-
per. This last literature section clarifies
its role and definition. The term cloud
bursting was originally used to describe
an extension of grids and clusters by
means of clouds, and thus a way of tran-
sition toward cloud computing (Mar-
shall et al. 2010; Mateescu et al. 2011).
Reynolds and Bess (2009) even classify
cloud bursting as an adoption strategy,
which they call the replacement strategy.
Yet cloud bursting also offers an alterna-
tive to leasing versus buying not only dur-
ing the adoption process. Cloud bursting
facilitates the shift of infrastructure-as-
a-service workload to public clouds (ex-
ternal providers) when internal resources
are insufficient (Goyal 2010; Kailasam
et al. 2010; Raj 2011). The question of
pooling several private clouds owned by
trusted entities in one community cloud
may coincide with the decision to adopt
cloud bursting or offer an alternative to
it. Technical approaches for implement-
ing cloud bursting comprise the Open-
Nebula project (Cerbelaud et al. 2009)
and Aneka (Vecchiola et al. 2011).

There are only a handful of empiri-
cal studies and decision models for cloud
migration. Several case studies have re-
ported on the practical experiences of
migrating to the cloud. For example,
Khajeh-Hosseini et al. (2010) calculate
cost savings and other stakeholder ben-
efits, such as satisfaction, for two servers
and find cost savings of 37 %. Assunção
et al. (2009) simulate the cost/benefits of
cloud bursting as a cluster extension by
determining an optimal scheduling strat-
egy. The economic decision model for
cloud bursting of software applications
that Strebel and Stage (2010) develop fo-
cuses on optimal resource allocations (in-
ternal/external) as a mixed-integer pro-
gramming problem. The model demands
a fixed number of hosted applications as
input and does not consider stochastic
demand.

Bibi et al. (2010) instead collect rele-
vant drivers of cloud adoption and pro-
pose a three-step decision model (as-
sessment of software and infrastructure
development costs, definition of quality
characteristics, and estimation of user de-
mand). However, they do not detail how
the three steps actually lead to a decision.
They also structure the various sources
of costs and how to estimate them. Their
classification of costs as fixed or variable
provides a valuable guide for perform-
ing the preliminary steps of the proposed
method.

Another elaborate decision tool for mi-
gration to the cloud, the Cloud Adoption
Toolkit (Khajeh-Hosseini et al. 2012),
consists of technology suitability analy-
ses, cost modeling, and stakeholder im-
pact analyses. The first element is a sim-
ple questionnaire that checks necessary
preconditions; cost modeling is based on
deterministic workload patterns. Thus,
the Cloud Adoption Toolkit can model
time-dependent demand but not random
demand peaks. Nor does it consider a
bursting strategy as a mixture of leasing
or buying. Finally, consulting firms have
addressed the cloud migration problem,
too; Forrester suggest bursting as a strate-
gic option in their decision framework
(Staten 2009a, 2009b). However, such
frameworks typically are proprietary and
not completely transparent.

Thus, most of the existing contribu-
tions propose a general framework that
maps the complete adoption decision,
but does not detail the economic perspec-
tive or merely analyzes a strict lease-or-
buy decision for cloud computing with-
out including the option of bursting.
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Some approaches disentangle the com-
ponents of fixed and variable costs, but
only one research paper truly addresses
the economic aspect of cloud bursting.
It does not consider a stochastic work-
load distribution, but rather focuses on
mixed-integer programming to obtain an
optimal allocation for a fixed number of
concurrent applications.

3 Model Description

The model presented here attempts to
minimize the expected costs that arise
as a sum of four cost components.
This expected value approach therefore
considers anticipated costs per interval.
The model differentiates internal capac-
ity (private resources) and external re-
sources offered by a commercial provider.
The size of the internal capacity is sub-
ject to optimization, whereas external re-
sources are on demand. The model al-
lows for extreme cases of no internal ca-
pacity or no external resources if we set
the respective variables to 0. The con-
cept of cloud bursting means that exter-
nal resources can be bought whenever
internal capacity is insufficient. Further-
more, the proposed model can be ex-
tended or altered to fit additional require-
ments or relax assumptions. For example,
it might be helpful to consider cancella-
tion costs instead of buying external re-
sources (Beck et al. 2008) or to turn to
multidimensional distributions that relax
the assumption of one resource unit.

3.1 Assumptions

The model relies on several assumptions
and preconditions. First, cloud burst-
ing should be already assessed as techni-
cally and managerially feasible. Khajeh-
Hosseini et al. (2012) show how such
considerations can be structured. Sec-
ond, the model assumes only one re-
source metric (e.g., number of stan-
dard virtual instances). In typical cases,
cloud resources sold as infrastructure-as-
a-service use standard instances as unit,
and the user must determine the required
number of instances, depending on the
most critical underlying resource. It is the
task of automated schedulers to deploy
theses instances as physical resources. In
the model described in this article, in-
ternal and external resources differ only
in price. That is, providers without ac-
ceptable service levels do not enter the
consideration set.

Table 1 Model variables

Decision variable

Cap Internal capacity in workload units

Input variables

F Cumulative workload distribution function (workload units per interval)

cin,fix Internal fixed costs (per capacity unit)

cin,var Internal variable costs (per workload unit)

cex,fix External fixed costs

cex,var External variable costs (per workload unit)

All Allowance (workload units per interval)

Third, by definition, the supply of ex-
ternal resources are not limited in cloud
computing. Because users thus do not
perceive shortfalls, demand does not de-
pend on supply. This means that users
do not consume more resources just be-
cause a large amount of resources are
currently unused, or vice versa. A more
technical assumption is that resources are
continuously scaled (not just integer val-
ues). This assumption is an acceptable
simplification for applications with suf-
ficient demand. If not applicable, con-
tinuous distributions can be replaced by
discrete distributions.

With regard to practical application,
application resource scaling can be done
in general either horizontally or verti-
cally. Horizontal scaling means apply-
ing more resources of the same kind in
parallel. Vertical scaling means applying
more powerful resources. Cloud comput-
ing as infrastructure service is primar-
ily a means of horizontal scaling. Thus,
in order to harvest the bursting capa-
bilities it is necessary to have applica-
tions or demand bursts that can be hor-
izontally scaled (i.e., can be distributed).
With the diffusion of the cloud technol-
ogy increasingly more applications offer
the functionality of horizontal scaling.

3.2 Workload Distribution

Workload is the amount of necessary re-
sources per time interval, e.g. number of
instances per hour. A reasonable length
for the time intervals is often the typi-
cal minimum lease time for external re-
sources. For example, Amazon EC2, a
popular provider of cloud services (Ama-
zon 2012), currently allows the creation
of additional instances within minutes.
However, the minimum lease time and
billing increment is one hour. Based on
this knowledge, one hour represents an
appropriate interval. The resources will

be measured in resource units (workload
units or capacity units), which could be
standard instances as a very abstract unit
or a typical critical unit (depending on
the application) such as number of CPUs
or storage units.

Workload is a random variable, i.e., it
has a stochastic distribution. The work-
load distribution is the distribution of the
amount of resources needed within one
interval. Formally, we denote the work-
load distribution function as F (Table 1).

The number of potentially appropri-
ate distributions is vast (Feitelson 2005),
and the best choice depends on the appli-
cation. Heavy-tailed distributions should
be reasonably truncated to avoid infinite
expected values. A feasible approach is to
use standard distribution functions (log-
normal, Gamma, Weibull, and Pareto)
to avoid over-fitting. Workload distribu-
tions vary from case to case, depend-
ing on the organizational environment,
scheduling and priority handling, usage
and user characteristics, system architec-
ture, and time of day/week/year (Feit-
elson 2005). Therefore, the distribution
needs to be determined on the basis of
data. There are different options for ob-
taining such a workload distribution. For
example, the IT department could sim-
ply ask departments (users) how many
resources they typically require and how
much that amount typically varies. Be-
cause metering in the proposed model is
very high-leveled, users likely can cope
with such estimation. With the method
of moments (Lublin and Feitelson 2003),
only a few parameters need to be esti-
mated, given a certain distribution class.
A more time-consuming but also more
accurate method to obtain workload dis-
tributions would be to use scheduler
traces or less elaborate utilization logging
tools.

The number of available private cloud
resources will be called internal capacity.
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Fig. 1 Four cost components (see also Table 1)

Internal capacity is a fixed value and the
decision variable in the model.

3.3 Costs

The model differentiates four types of
costs per interval (Table 1), indicated
with the subscript of the cost param-
eter c. By transitioning from costs per
unit to expected costs per interval, given
the workload distribution F, the total ex-
pected costs are the sum of the four com-
ponents displayed in Fig. 1. The opti-
mization task is to minimize the sum
of these four expected costs with respect
to internal capacity Cap as the decision
variable.

In the first dimension (lower vs. up-
per part of Fig. 1), costs split into inter-
nal (i.e., private cloud solution) and ex-
ternal (i.e., those occurring when inter-
nal resources do not suffice) costs. Using
internal resources to a certain extent is
cost-optimal only if the internal costs un-
der high utilization conditions are lower
than the external costs. This is typically
true (Opitz et al. 2008; Walker 2009;
Walker et al. 2010). In the second dimen-
sion, costs split into variable and fixed
costs (left vs. right). Variable costs de-
pend on the amount actually consumed;
fixed costs do not depend on the actual
workload.

The internal fixed costs (lower left,
Fig. 1) depend on the size of the internal
capacity, not on actual utilization. These
costs include the one-off costs of invest-
ments divided by their lifetime, as well

as utilization-independent running costs,
such as the costs of computing hardware
and software, business premises, person-
nel, and communication. Most of these
costs are proportional to the internal ca-
pacity, within a certain scale. Therefore,
internal variable costs are proportional to
internal capacity in the model.

The internal variable costs (lower right,
Fig. 1) consist of all internal costs that
are proportional to actual usage. They
come into play if, for example, energy-
saving measures reduce costs at low uti-
lization rates. The internal variable costs
are proportional to the actual internal
capacity used, and total internal capac-
ity (Cap) is the upper limit. The sum-

mand cin,var · ∫ Cap
0 x dF(x) represents ex-

pected costs when the workload is less
than internal capacity, and the summand
cin,var · Cap · [1 − F(Cap)] represents the
expected costs for the rest of the time.

The external cost structure is deter-
mined by the tariff. Although many
cloud computing definitions include pay-
per-use as a key characteristic (Vaquero
et al. 2009), market developments and
also customer preferences (Koehler et al.
2010) indicate increasing popularity of
multipart tariffs, and also researchers
predict that prices will become more
dynamic and efficient (e.g., Beck et al.
2008). Both IBM and Amazon currently
sell instances as either pay-per-use or “re-
served instances” that are actually two-
part tariffs: After paying a fixed fee
(monthly or yearly), the variable costs for

using each instance are lower. The gen-
eral idea of offering such tariffs, from the
provider’s perspective, is to earn higher
profits through higher consumption. Of-
ten, these tariffs also benefit customers in
form of consumer surplus.

The proposed model incorporates
three-part tariffs: a fixed component
cex,fix (e.g., monthly fee), a free con-
sumption allowance All, and variable
costs cex,var (cf. Lambrecht et al. 2007).
By setting the allowance equal to 0, we
obtain the special case of a two-part tar-
iff. If the entrance fee is 0, we obtain a
pay-per-use equation. Thus, the model
offers the flexibility to incorporate differ-
ent tariffs by just setting the cost variables
appropriately.

4 Optimal Internal Capacity in the
Model

The optimal strategy for how much in-
ternal capacity Cap should be provided
comes from minimizing the total ex-
pected costs as a function of internal ca-
pacity. The total costs equal the sum of
the four components in Fig. 1:

Costs(Cap)

= cin,fix · Cap + cin,var ·
∫ Cap

0
x dF(x)

+ cin,var · Cap · [1 − F(Cap)
]

+ cex,fix + cex,var

·
∫ ∞

Cap+All
(x − Cap − All)dF(x) (1)

The second summand can be rewritten as

cin,var ·
∫ Cap

0
x dF(x)

= cin,var ·
∫ ∞

0
x dF(x)

− cin,var ·
∫ ∞

Cap
x dF(x)

= cin,var · EV(WL)

− cin,var ·
∫ ∞

Cap
x dF(x) (2)

where EV(WL) denotes the expected
value of the workload. Together,

Costs(Cap)

= cin,fix · Cap + cin,var · EV(WL)

+ cin,var · Cap · [1 − F(Cap)
]

+ cex,fix + cex,var

·
∫ ∞

Cap+All
(x − Cap − All)dF(x)
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− cin,var ·
∫ ∞

Cap
x dF(x) (3)

The roots of the derivative yield locally
optimal capacities:

Costs′(Cap)

= cin,fix − cin,var · Cap · f (Cap)

+ cin,var · [1 − F(Cap)
]

− cex,var
[
1 − F(Cap + All)

]

+ cin,var · Cap · f (Cap)

= cin,fix + cin,var · [1 − F(Cap)
]

− cex,var
[
1 − F(Cap + All)

]
(4)

The parameters cin,fix and cex,var are typ-
ically the most relevant and most promi-
nently considered costs; that is, internal
capacities are governed by fixed costs, in-
dependent of consumption, whereas the
external cloud offers are pay per use
(All = 0 and cex,fix = 0). Disregarding
the zero terms (cin,var = cex,fix = 0), op-
timal internal capacity in this condition
is obtained by finding the root of this
derivative

0 = cin,fix − cex,var
[
1 − F(Cap + All)

]

⇔
Cap∗ = F−1

(

1 − cin,fix

cex,var

)

(5)

where F−1 is the inverse distribution
function. Therefore, the optimal internal
capacity depends on the ratio of internal
fixed costs and external variable costs, as
well as a specific quantile of the work-
load distribution determined on this ra-
tio. With an increasing ratio, the optimal
internal capacity decreases–whereas the
role of the distribution is more complex,
as explained below.

Consider a hypothetical numerical ex-
ample. Assume that the workload distri-
bution is simply normal, with a mean of
1,000 units and a standard deviation of
300 units. The costs in the bursting case
are defined as cin,fix = 1 and cex,var = 2
(i.e., external costs are twice as high as the
internal costs; cf. Armbrust et al. (2010)
or Shroff (2010)). Then, the optimal in-
ternal capacity for cloud bursting is 1,000
units (the median), with a 50 % proba-
bility of bursting events (5). The corre-
sponding costs are 1,000 units for the in-
ternal resources, plus mean external costs
of 239 units (numerical solution of the
upper right part of Fig. 1), for a total
of 1,239 units. Let us assume the enter-
prise has a private cloud of 2,116 resource

units at the current time, such that cur-
rent resources are sufficient with a prob-
ability of 99.99 % (four-nine availability).
The available resources are used at less
than half their capacity on average, and
cost 2,116 units. The exclusive use of ex-
ternal resources instead costs 2,000 units
on average (= mean workload × exter-
nal variable costs). In this stylized numer-
ical example, cloud bursting would save
roughly 40 % of the costs evoked through
either full leasing or no leasing. In the
latter case, it also avoids shortages.

How does expected workload and vari-
ance (volatility) influence the optimal
capacity in (5)? The optimal internal
capacity increases if expected workload
increases, ceteris paribus (i.e., variance
remains the same). Increasing the ex-
pected workload means shifting the den-
sity function along the x-axis to the right.
Thus, all quantiles shift in the same di-
rection, especially optimal capacity as a
quantile.

For details about the effect of variance
(volatility), ceteris paribus, consider a
transformed workload x−μ

σ
σ̃ +μ instead

of x with distribution F̃. This expres-
sion has the same expected value μ but a
different (say, higher) standard deviation
(σ̃ instead of σ ). Thus, F̃ has higher vari-
ance, ceteris paribus. The transformation
increases all observations (and all quan-
tiles) beyond the expected value and re-
duces all observations (and all quantiles)
smaller than the expected workload. Be-
cause Cap∗ is higher than expected work-
load, switching from F to F̃ increases the
optimal internal capacity (and reduces
it if the condition is not satisfied). The
optimal capacity is higher than the ex-
pected workload if the external costs are
high enough. The threshold depends on
the distribution and its shape. Market-
ing research notes, in a slightly different
context, the presence of similar behavior:
Under three-part subscription tariffs, un-
certain consumers tend to choose higher
allowances (Lambrecht et al. 2007).

When we switch from the consider-
ation of pay-per-use to two-part tariffs
(cex,fix > 0), we find that optimal capac-
ity is not affected if the external vari-
able costs cex,var remain equal. In prac-
tice, two-part tariffs have lower variable
costs, as an incentive for more consump-
tion. Thus the optimal capacity for two-
part tariffs, according to (5), is lower.
If we introduce an allowance (All > 0),
the optimal capacity decreases by this
allowance:

Cap∗ = F−1
(

1 − cin,fix

cex,var

)

− All. (6)

Therefore, the allowance directly in-
creases the amount of consumed exter-
nal resources. Because this tariff is usually
more closely associated with lower vari-
able costs, the optimal capacity is over-
all lower. If two or more tariffs are avail-
able, the actual costs must be compared
to determine which the cheaper tariff is.
If cex,fix is too high, then two- and three-
part tariffs are not attractive. Finally, we
consider variable internal costs cin,var. If
there is no allowance (All = 0), the ex-
ternal variable costs in (5) get replaced
by the difference between external and
internal variable costs:

Cap∗ = F−1
(

1 − cin,fix

cex,var − cin,var

)

. (7)

If the internal fixed costs were to trans-
form into internal variable costs, optimal
internal capacity would increase. The ef-
fect of volatility on the optimal internal
capacity is more likely negative though,
because the ratio in the brackets is larger.
The remaining general case in which all
parameters are positive has no closed-
form solution, but the effects of the pa-
rameters offer a mixture of the discussed
effects.

5 Applications

5.1 Description

The first empirical application is a pure
application of the model (computation
of the optimal capacity and cost savings
obtained by introducing cloud bursting).
The computation follows the numerical
example in the previous section but is
based on real data. The second empir-
ical application however is an example
of how the model can be used to derive
additional insights. An enterprise may
save money by pooling the (internal) re-
sources of different departments or cre-
ating a community cloud with other en-
terprises (Mohan 2011). This option can
be combined with cloud bursting or re-
garded as a competing strategy. The pro-
posed model can also compute the effects
on costs in both cases.

The cost savings then depend on the
correlation of the workloads. In the worst
case scenario, two departments have a
perfect correlation of +1. In the best case,
the two departments are negatively cor-
related (i.e., the workload of one depart-
ment is high, and the other’s is low). Both
cases are relevant in practice: Workloads
of different departments in the same
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time zone are probably positively cor-
related, whereas follow-the-sun scenar-
ios (Beulen et al. 2005), which aggregate
workloads from different departments
in different time zones, are negatively
correlated.

If the workloads of n departments have
distributions Fn, the expected value of
the sum of those workloads is equal
to the sum of the expected values μn
(if they exist). The variance is the sum
of all pairwise covariances (entries of
the covariance matrix). Therefore, neg-
ative correlation (negative covariance)
leads to lower variance in the aggregated
workload.

For some standard distributions, such
as normal ones, the means and covari-
ance provide sufficient information to
determine the distribution of the to-
tal workload easily (i.e., sums of nor-
mal distributions are normal). If not,
the method of moments can approxi-
mate the distribution of the total work-
load (for log-normal distributions, see
Schwartz and Yeh (1982)). Below the ap-
plied method is Monte Carlo sampling.
The procedure in application 1 also ap-
plies to separate workloads, and the to-
tal workload yields the cost savings of
pooling.

5.2 Data Sets

The first (application 1) is a perfor-
mance log of a large international bank’s
cloud datacenter, which contains 96 uni-
form nodes. The servers are primarily
used for risk analysis. The dataset lists
hourly CPU utilization rates in Octo-
ber 2008, measured with the RRD tool
(Oetiker 2011). In comparison to other
logged resources CPU utilization is the
most critical resource. The bank also pro-
vided monthly aggregated overall cost
calculations for six months, which al-
lowed estimating the approximate costs
per hour per node, through linear re-
gression. The 95 % confidence interval
of the costs per server per hour is bound
by €0.27 and €0.39 (regardless of actual
utilization rate). The average utilization
was approximately 14 %, and the high-
est recorded utilization was only 67 %
(Table 2). The distribution parameters
indicate the institution is risk averse in
terms of resource shortfalls.

The data in application 2 are trace logs
of the Auvergne Grid (Anoep et al. 2011).
The measured resource is again CPU uti-
lization. Grids can provide an infrastruc-
ture for clouds or be extended by clouds

Table 2 Descriptive statistics, first dataset (percentage utilization)

N Mean Std. dev. Min 5 % 95 % Max

744 13.5 % 10.9 % 0.8 % 1.4 % 32.6 % 67.1 %

Table 3 Descriptive statistics, second dataset (by group, percentage utilization)

Group Mean Std. dev. Min 5 % 95 % Max

Altogether 60.5 % 25.5 % 0.0 % 12.1 % 97.4 % 171.1 %

A 16.9 % 14.3 % 0.0 % 0.6 % 45.8 % 76.7 %

B 28.2 % 22.6 % 0.0 % 0.0 % 65.6 % 85.6 %

C 15.4 % 21.8 % 0.0 % 0.0 % 60.8 % 136.7 %

through cloud bursting (Marshall et al.
2010; Mateescu et al. 2011). The scien-
tific production grid has 405 users and
a high utilization rate. The analysis con-
centrates on a subset of data from April
to October that is characterized by a high
utilization of 61% on average (Table 3,
first row). The dataset offers both sub-
mission and waiting times of jobs. The
analysis considers the submission times
and thus eliminates scheduling effects.
Because of that, the maximum workload
(Table 3, first row) is beyond the 100 %
threshold. This dataset provides the nec-
essary information to reveal the effects of
pooling and correlations across users or
user groups. Again, the chosen time in-
tervals have a length of one hour, which
is much less than the average observed
waiting time (162 minutes) and in agree-
ment with the minimum lease time of
Amazon EC2 (Amazon 2012).

The user group with highest demand
accounts for 47 % of the total work-
load (group B, Table 3). The group with
second highest demand (group A, Ta-
ble 3) accounts for slightly more than
half of that amount. The other groups
have only small and irregular workloads.
They will be summarized altogether as
group C. Group C has much higher de-
mand peaks than the other two groups.
The workloads of the three groups are
significantly and negatively correlated
(Table 4). Apparently, there is some addi-
tional scheduling effect beyond the tech-
nical level. Therefore, one analysis sce-
nario re-estimates the aggregated work-
load of the different user groups assumed
the single group workload distributions
are independent. In contrast with the
first dataset, the Auvergne Grid does not
provide cost data. So, similar to the ap-
proach of Strebel and Stage (2010),the
model assumes cost ratios that reflect

Table 4 Pairwise correlations of user
groups (significant at p < .001)

Group A B

B −0.19

C −0.11 −0.36

prior literature and the observation of
first dataset.

5.3 Execution and Results: Application 1

The software EasyFit (MathWave
Technologies 2010) automatically es-
timates up to 65 different distribu-
tions (mostly using maximum likeli-
hood methods) and ranks them accord-
ing to Kolmogorov-Smirnov, Anderson-
Darling, and Chi-squared fit tests. From
the results, three very common standard
distributions with appropriate domains
and moderate fit (Weibull, Gamma, log-
normal) have been selected, as well as
the very flexible, well-fitting Wakeby dis-
tribution, to show the sensitivity of the
distribution choice. The Wakeby distri-
bution is an adjustable distribution with
five parameters (Rao and Hamed 1999)
that typically provides better fit than
the other distributions. The other three
distributions have only two parameters;
the log-normal distribution also has a
long tail that emphasizes demand peaks.
Across these three fit tests, the Wakeby
and Weibull distributions are the best
fitting distributions with appropriate
domains. The log-normal distribution,
with its long tail, suffers the poorest
fit, as is visible in Fig. 2; apparently, it
overemphasizes demand peaks.

The applied internal costs are the
average of €0.33 per hour, indepen-
dent of utilization. The pay-per-use costs
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of external resources depend on the
provider. Amazon (2012), the most pop-
ular provider, sold standard instances
from less than $1 to more than $2 per
hour at the time of conduction. The
computational example compares three
different levels of external costs: €1.00,
€1.50, and €2.00.

Figure 3 shows the resulting optimal
capacity for the three cost levels (deter-
mined by (5)) and a graphical illustration
of the price sensitivity for the four distri-
butions. The optimal capacity increases
with higher external costs. These results
do not differ much across the four distri-
butions, which suggests the model is ro-
bust to the choice of the distribution. The
most differing values are those of the log-
normal distribution with the apparently
poorest fit.

The optimal capacity appears to be
only around 20 % of current capacity – a
result of the very low average utilization.
We observe that the stronger emphasis
on the distribution tail by the log-normal

Fig. 2 Observed distribution and four fitted distributions

distribution leads to slightly higher op-
timal internal capacity if external prices
are large but a lower optimal internal
capacity if external prices are low.

Figure 4 provides the corresponding
cost savings at optimal capacity as a per-
centage of the costs under current ca-
pacity. The cost savings are high because
the observed utilization is low; for exam-
ple, Khajeh-Hosseini et al. (2010) report
a cost reduction of only 37 %. The cost
savings of approximately 70 % are some-
what lower than the reduction of internal
capacities (approximately 80 %), because
external resources are more expensive.
Cost savings also decrease with higher ex-
ternal costs. More apparent than in Fig. 3,
the log-normal distribution differs; the
other three distributions together yield
robust results.

5.4 Execution and Results: Application 2

The standard condition in this applica-
tion will be again cex,var/cin,fix = 5, com-
parable to the result in the first dataset

and those obtained by other authors (e.g.,
Armbrust et al. 2010). With the sec-
ond dataset, we can disaggregate users
to analyze cost savings through pooling.
The analysis compares three hypothetical
cases that pool resources differently. First,
we consider three disaggregated cases in
which all three user groups (A, B, and C;
Table 3) have their own datacenters. Sec-
ond, we analyze the observed aggregated
workload (with a slightly negative cor-
relation). Third, we assess a similar hy-
pothetical case but with zero correlation
among user groups. To obtain this con-
dition, the independent demand sum of
the three distributions in the first case
is simulated and the results are fitted
again (Monte Carlo solution). The inde-
pendent sum approximates an elimina-
tion of the observed scheduling above the
technical level.

The workload distributions of the
three groups have different characteris-
tics (Table 5). Group B compared with
group A has a flat distribution, with a
high probability of no workload. The ag-
gregated distribution compared with the
separate groups offers a clear mode (in-
flection point of the cumulative distri-
bution function). The independent sum
reveals a characteristic distribution tail
after the elimination of the top-level
scheduling. Similar to the first dataset,
the EasyFit application (MathWave Tech-
nologies 2010) lists the Wakeby distribu-
tion as the best fitting distribution in al-
most all cases (Table 5), though its results
are not notably different from those of
the Weibull or Gamma distributions. The
log-normal distribution, however, again
provides obviously the worst fit.

Optimal
capacity

External costs
€1.00 €1.50 €2.00

Weibull 16 % 20 % 23 %
Gamma 15 % 20 % 23 %
Wakeby 17 % 21 % 24 %
Log-normal 14 % 20 % 24 %

Fig. 3 Optimal capacity (percentage of current) for different levels of external costs and distributions
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Optimal
savings

External costs
€1.00 €1.50 €2.00

Weibull 74 % 70 % 67 %
Gamma 74 % 70 % 67 %
Wakeby 74 % 70 % 68 %
Log-normal 68 % 60 % 54 %

Fig. 4 Cost savings (percentage of current) for different levels of external costs and distributions

Table 5 Distribution fit for application 2

Notes: Group A, B and C refer to the workloads of the three groups separately, the forth column is the observed workload altogether, and the fifth
column contains the simulated independent sum. Each cell offers a graphical comparison of observed and fitted distribution functions and the rank
among all 65 tested distributions (rank 1 = best fit, Kolmogorov-Smirnov/Anderson-Darling/Chi-square)

Table 6 offers the results of the deci-
sion model applying the Wakeby distri-
bution as the best fitting distribution and
cex,var : cin,fix = 5 : 1. The internal costs at
actual capacity are 100 % = 1. Without

cloud bursting, it would be equal to the
actual costs. Optimal capacity with cloud
bursting (Table 6, fourth row) is 22 %
lower than actual (100 %), and cloud
bursting would save 6 % of costs com-

pared with the actual costs without cloud
bursting. Even with the negative corre-
lation eliminated (last row), the optimal
capacity remains below actual capacity.
In this case however, external resources
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are more intensively consumed, so total
costs are higher than actual costs. This
effect comes from the additional exter-
nal resources that are needed to compen-
sate the higher volatility that was partly
suppressed by the negative correlation.

Table 6 Estimated optimal capacity and cost savings by separate groups, with
correlated (actual), and with artificially independent workloads. Costs at actual
capacity without cloud bursting = 100 %

Scenario Optimal capacity
(percentage of current)

Total costs

Group A only 28 % 40 %

Group B only 50 % 62 %

Group C only 24 % 52 %

All correlated (observed) 78 % 94 %

All independent (assumed) 86 % 115 %

The total costs of separate clouds for
each group (40 + 62 + 52 = 154 %)

are even higher. That is, the cost sav-
ings obtained from pooling in this dataset
equal (154−115)/154 = 25 % for uncor-
related workloads or (154 − 94)/154 =

39 % with the observed negative correla-
tion.

Finally, Figs. 5 and 6 show the sensitiv-
ity of the observed correlated total work-
load to different distributions and costs
(both referring to the fourth row in Ta-
ble 6). If the ratio of external costs and
internal costs is not too high, the differ-
ences among the Weibull, Gamma, and
Wakeby distributions are small. As for
data set 1, the optimal capacity (Fig. 6)
is more robust with respect to the distri-
bution assumption than the total costs.
The differences in optimal capacity are
small for small and medium external
costs, except in the log-normal distribu-
tion. Again, the log-normal distribution
with its poor fit renders much different
results and should not be considered. The
sensitivity analyses of the other results

Total
costs

External costs
3:1 5:1 7:1

Weibull 90 % 98 % 103 %
Gamma 89 % 100 % 106 %
Wakeby 86 % 94 % 99 %
Log-normal 122 % 148 % 167 %

Fig. 5 Total costs under the correlated workload (Table 6, fourth row) for different levels of external costs and distributions

Optimal
capacity

External costs
3:1 5:1 7:1

Weibull 71 % 82 % 89 %
Gamma 68 % 80 % 87 %
Wakeby 70 % 78 % 83 %
Log-normal 71 % 95 % 111 %

Fig. 6 Optimal capacity under the correlated workload (Table 6, fourth row) for different levels of external costs and
distributions
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Abstract
Markus Lilienthal

A Decision Support Model
for Cloud Bursting

The cloud computing market divides
into public (commercial) and private
(self-provisioned) clouds. The concept
of cloud bursting combines public and
private clouds: The private cloud (in-
ternal resources) provides the compu-
tational capacity, but a part of the de-
mand is offloaded onto public clouds.
This article proposes an easy-to-apply
economic decision support model for
determining on the one hand the op-
timal size of the internal capacity for
cloud bursting technology, and on the
other hand the cost savings. The model
uses an expected value approach that
considers stochastic workload and is
flexible with respect to the distribu-
tion choice. Two empirical examples
demonstrate the applicability of the
model.

Keywords: Cloud computing, Cloud
bursting, Augmented cloud comput-
ing, Lease or buy, Computing eco-
nomics, Cost savings, Cloud adoption

in Table 6 are not displayed but yield
qualitatively the same conclusions.

5.5 Summary of the Results

The first application, a purely empiri-
cal elaboration of the model to deter-
mine the optimal internal capacity, shows
a high cost saving potential of 70 %.
This large value coincides with a low ob-
served average utilization of only 14 %.
The second application further investi-
gates the role of pooling when applying
the model to either separated or aggre-
gated data. The analyzed system is well-
utilized at 61 %, thus the cost savings of
cloud bursting with respect to the aggre-
gated (and slightly negatively correlated)
workload is small (6 %). However, the
cost savings from pooling are consider-
able: Pooling all three user groups saves
39 % of the costs compared with employ-
ing individually owned cloud bursting
solutions.

The results in both applications also are
mostly robust to the choice of the dis-
tribution, though the distribution should
have at least moderate fit (as is true for
three of the four distributions in both
applications). Higher external costs lead
to a higher optimal internal capacity and
lower cost savings, but small errors in
costs do not bias the results substantially.

6 Conclusions

The idea of cloud bursting provides an
opportunity to combine the appeals of
private cloud resources with the bene-
fits of buying additional resources if pri-
vate resources are not sufficient. This re-
search offers a flexible decision model to
describe the economic trade-off between
private clouds and public clouds, with
cloud bursting as a third option. The de-
cision model is flexible with respect to the
workload distribution.

The article presents two empirical ap-
plications. The first uses workload data
from a large international bank, with sep-
arately provided cost data. Such datasets
are rare; from that perspective, the re-
sults are insightful. The analysis yields
predicted cost savings of 70 % by using
cloud bursting, compared with the cur-
rent costs that accrue from the very low
level of observed utilization. The second
application uses the model to also deter-
mine the effects of pooling workloads.
The cost savings then depend on the
degree of correlation across user pools.

Three separate clouds, each with cloud
bursting, would incur 154 % of the cur-
rent costs and 102 % of current capac-
ity (without bursting). All three groups
pooled together, though, require only
94 % of the current costs at 78 % of
the current capacity under cloud burst-
ing. The result depends on the assumed
cost structure, which was estimated for
this application.

The applications represent two specific
cases. For example, the existing utiliza-
tion in application 1 is very low, which
leads to high cost savings. It is difficult
to generalize these empirical results. Yet
the intention of these two empirical stud-
ies is to demonstrate the applicability of
the model, not provide representative fig-
ures. The two applications reveal that the
benefits differ strongly from case to case
but can potentially be quite significant.

The theoretical section of this research
notes the effects of average resource con-
sumption, volatility, and pricing of ex-
ternal resources on an optimal strategy.
As long as the price ratio between ex-
ternal and internal resources is large,
greater volatility leads to an increase in
the amount of internal resources as opti-
mal value. However, in the case of a small
ratio, demand volatility becomes a driver
of the use of external resources. This ob-
servation confirms the widespread be-
lief that public cloud computing is par-
ticularly beneficial for small enterprises
with volatile resource demand and rel-
atively high costs of running their own
hardware.

The model also confirms that the op-
timum quantity of internal resources di-
minishes with multipart tariffs. There-
fore, cloud providers should follow the
example of the telecommunications in-
dustry when transitioning from simple
pay-per-use to multipart tariffs. Market-
ing literature has shown that multipart
tariffs benefit not only providers but can
also benefit customers through greater
consumer surplus.

Finally, the value of the proposed
model lies in its applicability to com-
plex situations and its flexibility in terms
of workload patterns (distributions). Un-
like existing models, it considers stochas-
tic demand. Similar studies can easily be
conducted by IT departments.
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